Dimensionality Reduction with Subspace Structure Preservation

Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that $2K$ projection vectors are sufficient for the independence preservation of any $K$ class data sampled from a union of independent subspaces. It is this non-trivial observation that we use for designing our dimensionality reduction technique. In this paper, we propose a novel dimensionality reduction algorithm that theoretically preserves this structure for a given dataset. We support our theoretical analysis with empirical results on both synthetic and real world data achieving \textit{state-of-the-art} results compared to popular dimensionality reduction techniques.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here