Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach

The performance of a feedforward controller is primarily determined by the extent to which it can capture the relevant dynamics of a system. The aim of this paper is to develop an input-output linear parameter-varying (LPV) feedforward parameterization and a corresponding data-driven estimation method in which the dependency of the coefficients on the scheduling signal are learned by a neural network. The use of a neural network enables the parameterization to compensate a wide class of constant relative degree LPV systems. Efficient optimization of the neural-network-based controller is achieved through a Levenberg-Marquardt approach with analytic gradients and a pseudolinear approach generalizing Sanathanan-Koerner to the LPV case. The performance of the developed feedforward learning method is validated in a simulation study of an LPV system showing excellent performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here