Direct multi-modal inversion of geophysical logs using deep learning

29 Nov 2021  ·  Sergey Alyaev, Ahmed H. Elsheikh ·

Geosteering of wells requires fast interpretation of geophysical logs, which is a non-unique inverse problem. Current work presents a proof-of-concept approach to multi-modal probabilistic inversion of logs using a single evaluation of an artificial deep neural network (DNN). A mixture density DNN (MDN) is trained using the "multiple-trajectory-prediction" (MTP) loss functions, which avoids mode collapse typical for traditional MDNs, and allows multi-modal prediction ahead of data. The proposed approach is verified on the real-time stratigraphic inversion of gamma-ray logs. The multi-modal predictor outputs several likely inverse solutions/predictions, providing more accurate and realistic solutions than a deterministic regression using a DNN. For these likely stratigraphic curves, the model simultaneously predicts their probabilities, which are implicitly learned from the training geological data. The stratigraphy predictions and their probabilities obtained in milliseconds from the MDN can enable better real-time decisions under geological uncertainties.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here