Direction-Aggregated Attack for Transferable Adversarial Examples

19 Apr 2021  ·  Tianjin Huang, Vlado Menkovski, Yulong Pei, Yuhao Wang, Mykola Pechenizkiy ·

Deep neural networks are vulnerable to adversarial examples that are crafted by imposing imperceptible changes to the inputs. However, these adversarial examples are most successful in white-box settings where the model and its parameters are available. Finding adversarial examples that are transferable to other models or developed in a black-box setting is significantly more difficult. In this paper, we propose the Direction-Aggregated adversarial attacks that deliver transferable adversarial examples. Our method utilizes aggregated direction during the attack process for avoiding the generated adversarial examples overfitting to the white-box model. Extensive experiments on ImageNet show that our proposed method improves the transferability of adversarial examples significantly and outperforms state-of-the-art attacks, especially against adversarial robust models. The best averaged attack success rates of our proposed method reaches 94.6\% against three adversarial trained models and 94.8\% against five defense methods. It also reveals that current defense approaches do not prevent transferable adversarial attacks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here