Disaster Monitoring using Unmanned Aerial Vehicles and Deep Learning

31 Jul 2018  ·  Andreas Kamilaris, Francesc X. Prenafeta-Boldú ·

Monitoring of disasters is crucial for mitigating their effects on the environment and human population, and can be facilitated by the use of unmanned aerial vehicles (UAV), equipped with camera sensors that produce aerial photos of the areas of interest. A modern technique for recognition of events based on aerial photos is deep learning. In this paper, we present the state of the art work related to the use of deep learning techniques for disaster identification. We demonstrate the potential of this technique in identifying disasters with high accuracy, by means of a relatively simple deep learning model. Based on a dataset of 544 images (containing disaster images such as fires, earthquakes, collapsed buildings, tsunami and flooding, as well as non-disaster scenes), our results show an accuracy of 91% achieved, indicating that deep learning, combined with UAV equipped with camera sensors, have the potential to predict disasters with high accuracy.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here