Discounted Reinforcement Learning Is Not an Optimization Problem
Discounted reinforcement learning is fundamentally incompatible with function approximation for control in continuing tasks. It is not an optimization problem in its usual formulation, so when using function approximation there is no optimal policy. We substantiate these claims, then go on to address some misconceptions about discounting and its connection to the average reward formulation. We encourage researchers to adopt rigorous optimization approaches, such as maximizing average reward, for reinforcement learning in continuing tasks.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here