Discovering Nonlinear Relations with Minimum Predictive Information Regularization

7 Jan 2020  ·  Tailin Wu, Thomas Breuel, Michael Skuhersky, Jan Kautz ·

Identifying the underlying directional relations from observational time series with nonlinear interactions and complex relational structures is key to a wide range of applications, yet remains a hard problem. In this work, we introduce a novel minimum predictive information regularization method to infer directional relations from time series, allowing deep learning models to discover nonlinear relations. Our method substantially outperforms other methods for learning nonlinear relations in synthetic datasets, and discovers the directional relations in a video game environment and a heart-rate vs. breath-rate dataset.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here