Arterial blood pressure waveform in liver transplant surgery possesses variability of morphology reflecting recipients' acuity and predicting short term outcomes

Background: We investigated clinical information underneath the beat-to-beat fluctuation of the arterial blood pressure (ABP) waveform morphology. We proposed the Dynamical Diffusion Map algorithm (DDMap) to quantify the variability of morphology. The underlying physiology could be the compensatory mechanisms involving complex interactions between various physiological mechanisms to regulate the cardiovascular system. As a liver transplant surgery contains distinct periods, we investigated its clinical behavior in different surgical steps. Methods: Our study used DDmap algorithm, based on unsupervised manifold learning, to obtain a quantitative index for the beat-to-beat variability of morphology. We examined the correlation between the variability of ABP morphology and disease acuity as indicated by Model for End-Stage Liver Disease (MELD) scores, the postoperative laboratory data, and 4 early allograft failure (EAF) scores. Results: Among the 85 enrolled patients, the variability of morphology obtained during the presurgical phase was best correlated with MELD-Na scores. The neohepatic phase variability of morphology was associated with EAF scores as well as postoperative bilirubin levels, international normalized ratio, aspartate aminotransferase levels, and platelet count. Furthermore, variability of morphology presents more associations with the above clinical conditions than the common BP measures and their BP variability indices. Conclusions: The variability of morphology obtained during the presurgical phase is indicative of patient acuity, whereas those during the neohepatic phase are indicative of short-term surgical outcomes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here