Discrete Linear Canonical Transform on Graphs

21 Sep 2022  ·  Yu Zhang, Bing-Zhao Li ·

With the wide application of spectral and algebraic theory in discrete signal processing techniques in the field of graph signal processing, an increasing number of signal processing methods have been proposed, such as the graph Fourier transform, graph wavelet transform and windowed graph Fourier transform. In this paper, we propose and design the definition of the discrete linear canonical transform on graphs (GLCT), which is an extension of the discrete linear canonical transform (DLCT), just as the graph Fourier transform (GFT) is an extension of the discrete Fourier transform (DFT). First, based on the centrality and scalability of the DLCT eigendecomposition approach, the definition of GLCT is proposed by combining graph chirp-Fourier transform, graph scale transform and graph fractional Fourier transform. Second, we derive and discuss the properties and special cases of GLCT. Finally, some GLCT examples of the graph signals are given to illustrate the improvement of the transformation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here