Discrete Predictive Representation for Long-horizon Planning

1 Jan 2021  ·  Thanard Kurutach, Julia Peng, Yang Gao, Stuart Russell, Pieter Abbeel ·

Discrete representations have been key in enabling robots to plan at more abstract levels and solve temporally-extended tasks more efficiently for decades. However, they typically require expert specifications. On the other hand, deep reinforcement learning aims to learn to solve tasks end-to-end, but struggles with long-horizon tasks. In this work, we propose Discrete Object-factorized Representation Planning (DORP), which learns temporally-abstracted discrete representations from exploratory video data in an unsupervised fashion via a mutual information maximization objective. DORP plans a sequence of abstract states for a low-level model-predictive controller to follow. In our experiments, we show that DORP robustly solves unseen long-horizon tasks. Interestingly, it discovers independent representations per object and binary properties such as a key-and-door.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here