Disentangle Perceptual Learning through Online Contrastive Learning

24 Jun 2020Kangfu MeiYao LuQiaosi YiHaoyu WuJuncheng LiRui Huang

Pursuing realistic results according to human visual perception is the central concern in the image transformation tasks. Perceptual learning approaches like perceptual loss are empirically powerful for such tasks but they usually rely on the pre-trained classification network to provide features, which are not necessarily optimal in terms of visual perception of image transformation... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet