Disentangled State Space Representations

Sequential data often originates from diverse domains across which statistical regularities and domain specifics exist. To specifically learn cross-domain sequence representations, we introduce disentangled state space models (DSSM) -- a class of SSM in which domain-invariant state dynamics is explicitly disentangled from domain-specific information governing that dynamics... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet