Disfluency Detection using a Bidirectional LSTM

12 Apr 2016  ·  Vicky Zayats, Mari Ostendorf, Hannaneh Hajishirzi ·

We introduce a new approach for disfluency detection using a Bidirectional Long-Short Term Memory neural network (BLSTM). In addition to the word sequence, the model takes as input pattern match features that were developed to reduce sensitivity to vocabulary size in training, which lead to improved performance over the word sequence alone. The BLSTM takes advantage of explicit repair states in addition to the standard reparandum states. The final output leverages integer linear programming to incorporate constraints of disfluency structure. In experiments on the Switchboard corpus, the model achieves state-of-the-art performance for both the standard disfluency detection task and the correction detection task. Analysis shows that the model has better detection of non-repetition disfluencies, which tend to be much harder to detect.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here