Dissenting Explanations: Leveraging Disagreement to Reduce Model Overreliance

14 Jul 2023  ·  Omer Reingold, Judy Hanwen Shen, Aditi Talati ·

While explainability is a desirable characteristic of increasingly complex black-box models, modern explanation methods have been shown to be inconsistent and contradictory. The semantics of explanations is not always fully understood - to what extent do explanations "explain" a decision and to what extent do they merely advocate for a decision? Can we help humans gain insights from explanations accompanying correct predictions and not over-rely on incorrect predictions advocated for by explanations? With this perspective in mind, we introduce the notion of dissenting explanations: conflicting predictions with accompanying explanations. We first explore the advantage of dissenting explanations in the setting of model multiplicity, where multiple models with similar performance may have different predictions. In such cases, providing dissenting explanations could be done by invoking the explanations of disagreeing models. Through a pilot study, we demonstrate that dissenting explanations reduce overreliance on model predictions, without reducing overall accuracy. Motivated by the utility of dissenting explanations we present both global and local methods for their generation.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here