Distant Supervision for Relation Extraction with Linear Attenuation Simulation and Non-IID Relevance Embedding

22 Dec 2018Changsen YuanHeyan HuangChong FengXiao LiuXiaochi Wei

Distant supervision for relation extraction is an efficient method to reduce labor costs and has been widely used to seek novel relational facts in large corpora, which can be identified as a multi-instance multi-label problem. However, existing distant supervision methods suffer from selecting important words in the sentence and extracting valid sentences in the bag... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet