DistNet2D: Leveraging long-range temporal information for efficient segmentation and tracking

30 Oct 2023  ·  Jean Ollion, Martin Maliet, Caroline Giuglaris, Elise Vacher, Maxime Deforet ·

Extracting long tracks and lineages from videomicroscopy requires an extremely low error rate, which is challenging on complex datasets of dense or deforming cells. Leveraging temporal context is key to overcoming this challenge. We propose DistNet2D, a new deep neural network (DNN) architecture for 2D cell segmentation and tracking that leverages both mid- and long-term temporal information. DistNet2D considers seven frames at the input and uses a post-processing procedure that exploits information from the entire video to correct segmentation errors. DistNet2D outperforms two recent methods on two experimental datasets, one containing densely packed bacterial cells and the other containing eukaryotic cells. It is integrated into an ImageJ-based graphical user interface for 2D data visualization, curation, and training. Finally, we demonstrate the performance of DistNet2D on correlating the size and shape of cells with their transport properties over large statistics, for both bacterial and eukaryotic cells.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here