Distributed control of DC grids: integrating prosumers motives

In this paper, a novel distributed control strategy addressing a (feasible) psycho-social-physical welfare problem in islanded Direct Current (DC) smart grids is proposed. Firstly, we formulate a (convex) optimization problem that allows prosumers to share current with each other, taking into account the technical and physical aspects and constraints of the grid (e.g., stability, safety), as well as psycho-social factors (i.e., prosumers' personal values). Secondly, we design a controller whose (unforced) dynamics represent the continuous time primal-dual dynamics of the considered optimization problem. Thirdly, a passive interconnection between the physical grid and the controller is presented. Global asymptotic convergence of the closed-loop system to the desired steady-state is proved and simulations based on collected data on psycho-social aspects illustrate and confirm the theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here