Distributed Design of Robust Kalman Filters over Corrupted Channels

29 Jun 2019  ·  Xingkang He, Karl Henrik Johansson, Haitao Fang ·

We study distributed filtering for a class of uncertain systems over corrupted communication channels. We propose a distributed robust Kalman filter with stochastic gains, through which upper bounds of the conditional mean square estimation errors are calculated online. We present a robust collective observability condition, under which the mean square error of the distributed filter is proved to be uniformly upper bounded if the network is strongly connected. For better performance, we modify the filer by introducing a switching fusion scheme based on a sliding window. It provides a smaller upper bound of the conditional mean square error. Numerical simulations are provided to validate the theoretical results and show that the filter scales to large networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here