Distributed Information-Theoretic Clustering

15 Feb 2016  ·  Georg Pichler, Pablo Piantanida, Gerald Matz ·

We study a novel multi-terminal source coding setup motivated by the biclustering problem. Two separate encoders observe two i.i.d. sequences $X^n$ and $Y^n$, respectively. The goal is to find rate-limited encodings $f(x^n)$ and $g(z^n)$ that maximize the mutual information $I(f(X^n); g(Y^n))/n$. We discuss connections of this problem with hypothesis testing against independence, pattern recognition, and the information bottleneck method. Improving previous cardinality bounds for the inner and outer bounds allows us to thoroughly study the special case of a binary symmetric source and to quantify the gap between the inner and the outer bound in this special case. Furthermore, we investigate a multiple description (MD) extension of the Chief Operating Officer (CEO) problem with mutual information constraint. Surprisingly, this MD-CEO problem permits a tight single-letter characterization of the achievable region.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here