Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points

3 Jul 2019  ·  Stefan Vlaski, Ali H. Sayed ·

The diffusion strategy for distributed learning from streaming data employs local stochastic gradient updates along with exchange of iterates over neighborhoods. In Part I [2] of this work we established that agents cluster around a network centroid and proceeded to study the dynamics of this point. We established expected descent in non-convex environments in the large-gradient regime and introduced a short-term model to examine the dynamics over finite-time horizons. Using this model, we establish in this work that the diffusion strategy is able to escape from strict saddle-points in O(1/$\mu$) iterations; it is also able to return approximately second-order stationary points in a polynomial number of iterations. Relative to prior works on the polynomial escape from saddle-points, most of which focus on centralized perturbed or stochastic gradient descent, our approach requires less restrictive conditions on the gradient noise process.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here