Distributed Low Rank Approximation of Implicit Functions of a Matrix

28 Jan 2016David P. WoodruffPeilin Zhong

We study distributed low rank approximation in which the matrix to be approximated is only implicitly represented across the different servers. For example, each of $s$ servers may have an $n \times d$ matrix $A^t$, and we may be interested in computing a low rank approximation to $A = f(\sum_{t=1}^s A^t)$, where $f$ is a function which is applied entrywise to the matrix $\sum_{t=1}^s A^t$... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.