Distributed Nesterov gradient methods over arbitrary graphs

21 Jan 2019  ·  Ran Xin, Dusan Jakovetic, Usman A. Khan ·

In this letter, we introduce a distributed Nesterov method, termed as $\mathcal{ABN}$, that does not require doubly-stochastic weight matrices. Instead, the implementation is based on a simultaneous application of both row- and column-stochastic weights that makes this method applicable to arbitrary (strongly-connected) graphs. Since constructing column-stochastic weights needs additional information (the number of outgoing neighbors at each agent), not available in certain communication protocols, we derive a variation, termed as FROZEN, that only requires row-stochastic weights but at the expense of additional iterations for eigenvector learning. We numerically study these algorithms for various objective functions and network parameters and show that the proposed distributed Nesterov methods achieve acceleration compared to the current state-of-the-art methods for distributed optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here