Distributed off-Policy Actor-Critic Reinforcement Learning with Policy Consensus

21 Mar 2019Yan ZhangMichael M. Zavlanos

In this paper, we propose a distributed off-policy actor critic method to solve multi-agent reinforcement learning problems. Specifically, we assume that all agents keep local estimates of the global optimal policy parameter and update their local value function estimates independently... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.