Distributed randomized Kaczmarz for the adversarial workers

28 Feb 2022  ·  Xia Li, Longxiu Huang, Deanna Needell ·

Developing large-scale distributed methods that are robust to the presence of adversarial or corrupted workers is an important part of making such methods practical for real-world problems. Here, we propose an iterative approach that is adversary-tolerant for least-squares problems. The algorithm utilizes simple statistics to guarantee convergence and is capable of learning the adversarial distributions. Additionally, the efficiency of the proposed method is shown in simulations in the presence of adversaries. The results demonstrate the great capability of such methods to tolerate different levels of adversary rates and to identify the erroneous workers with high accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here