Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability

22 Sep 2016  ·  Janis Keuper, Franz-Josef Pfreundt ·

This paper presents a theoretical analysis and practical evaluation of the main bottlenecks towards a scalable distributed solution for the training of Deep Neuronal Networks (DNNs). The presented results show, that the current state of the art approach, using data-parallelized Stochastic Gradient Descent (SGD), is quickly turning into a vastly communication bound problem. In addition, we present simple but fixed theoretic constraints, preventing effective scaling of DNN training beyond only a few dozen nodes. This leads to poor scalability of DNN training in most practical scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here