Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning

17 Jul 2020Jaehyung KimYoungbum HurSejun ParkEunho YangSung Ju HwangJinwoo Shin

While semi-supervised learning (SSL) has proven to be a promising way for leveraging unlabeled data when labeled data is scarce, the existing SSL algorithms typically assume that training class distributions are balanced. However, these SSL algorithms trained under imbalanced class distributions can severely suffer when generalizing to a balanced testing criterion, since they utilize biased pseudo-labels of unlabeled data toward majority classes... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet