Distributionally Robust Markov Decision Processes

NeurIPS 2010  ·  Huan Xu, Shie Mannor ·

We consider Markov decision processes where the values of the parameters are uncertain. This uncertainty is described by a sequence of nested sets (that is, each set contains the previous one), each of which corresponds to a probabilistic guarantee for a different confidence level so that a set of admissible probability distributions of the unknown parameters is specified. This formulation models the case where the decision maker is aware of and wants to exploit some (yet imprecise) a-priori information of the distribution of parameters, and arises naturally in practice where methods to estimate the confidence region of parameters abound. We propose a decision criterion based on *distributional robustness*: the optimal policy maximizes the expected total reward under the most adversarial probability distribution over realizations of the uncertain parameters that is admissible (i.e., it agrees with the a-priori information). We show that finding the optimal distributionally robust policy can be reduced to a standard robust MDP where the parameters belong to a single uncertainty set, hence it can be computed in polynomial time under mild technical conditions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here