Divergence-Based Motivation for Online EM and Combining Hidden Variable Models

11 Feb 2019 Ehsan Amid Manfred K. Warmuth

Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet