Diversified Recommendations for Agents with Adaptive Preferences

20 Sep 2022  ·  Arpit Agarwal, William Brown ·

When an Agent visits a platform recommending a menu of content to select from, their choice of item depends not only on fixed preferences, but also on their prior engagements with the platform. The Recommender's primary objective is typically to encourage content consumption which optimizes some reward, such as ad revenue, but they often also aim to ensure that a wide variety of content is consumed by the Agent over time. We formalize this problem as an adversarial bandit task. At each step, the Recommender presents a menu of $k$ (out of $n$) items to the Agent, who selects one item in the menu according to their unknown preference model, which maps their history of past items to relative selection probabilities. The Recommender then observes the Agent's chosen item and receives bandit feedback of the item's reward. In addition to optimizing reward from selected items, the Recommender must also ensure that the total distribution of chosen items has sufficiently high entropy. We define a class of preference models which are locally learnable, i.e. behavior over the entire domain can be estimated by only observing behavior in a small region; this includes models representable by bounded-degree polynomials as well as functions with a sparse Fourier basis. For this class, we give an algorithm for the Recommender which obtains $\tilde{O}(T^{3/4})$ regret against all item distributions satisfying two conditions: they are sufficiently diversified, and they are instantaneously realizable at any history by some distribution over menus. We show that these conditions are closely connected: all sufficiently high-entropy distributions are instantaneously realizable at any item history. We also give a set of negative results justifying our assumptions, in the form of a runtime lower bound for non-local learning and linear regret lower bounds for alternate benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here