Diversity Regularized Adversarial Learning

30 Jan 2019Babajide O. AyindeKeishin NishihamaJacek M. Zurada

The two key players in Generative Adversarial Networks (GANs), the discriminator and generator, are usually parameterized as deep neural networks (DNNs). On many generative tasks, GANs achieve state-of-the-art performance but are often unstable to train and sometimes miss modes... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.