Do Concept Bottleneck Models Respect Localities?
Concept-based methods explain model predictions using human-understandable concepts. These models require accurate concept predictors, yet the faithfulness of existing concept predictors to their underlying concepts is unclear. In this paper, we investigate the faithfulness of Concept Bottleneck Models (CBMs), a popular family of concept-based architectures, by looking at whether they respect "localities" in datasets. Localities involve using only relevant features when predicting a concept's value. When localities are not considered, concepts may be predicted based on spuriously correlated features, degrading performance and robustness. This work examines how CBM predictions change when perturbing model inputs, and reveals that CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets. Our empirical and theoretical results demonstrate that datasets with correlated concepts may lead to accurate but uninterpretable models that fail to learn localities. Overall, we find that CBM interpretability is fragile, as CBMs occasionally rely upon spurious features, necessitating further research into the robustness of concept predictors.
PDF Abstract