Do Language Models Perform Generalizable Commonsense Inference?

Inspired by evidence that pretrained language models (LMs) encode commonsense knowledge, recent work has applied LMs to automatically populate commonsense knowledge graphs (CKGs). However, there is a lack of understanding on their generalization to multiple CKGs, unseen relations, and novel entities. This paper analyzes the ability of LMs to perform generalizable commonsense inference, in terms of knowledge capacity, transferability, and induction. Our experiments with these three aspects show that: (1) LMs can adapt to different schemas defined by multiple CKGs but fail to reuse the knowledge to generalize to new relations. (2) Adapted LMs generalize well to unseen subjects, but less so on novel objects. Future work should investigate how to improve the transferability and induction of commonsense mining from LMs.

PDF Abstract Findings (ACL) 2021 PDF Findings (ACL) 2021 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here