Does Preprocessing Help Training Over-parameterized Neural Networks?

NeurIPS 2021  ·  Zhao Song, Shuo Yang, Ruizhe Zhang ·

Deep neural networks have achieved impressive performance in many areas. Designing a fast and provable method for training neural networks is a fundamental question in machine learning. The classical training method requires paying $\Omega(mnd)$ cost for both forward computation and backward computation, where $m$ is the width of the neural network, and we are given $n$ training points in $d$-dimensional space. In this paper, we propose two novel preprocessing ideas to bypass this $\Omega(mnd)$ barrier: $\bullet$ First, by preprocessing the initial weights of the neural networks, we can train the neural network in $\widetilde{O}(m^{1-\Theta(1/d)} n d)$ cost per iteration. $\bullet$ Second, by preprocessing the input data points, we can train the neural network in $\widetilde{O} (m^{4/5} nd )$ cost per iteration. From the technical perspective, our result is a sophisticated combination of tools in different fields, greedy-type convergence analysis in optimization, sparsity observation in practical work, high-dimensional geometric search in data structure, concentration and anti-concentration in probability. Our results also provide theoretical insights for a large number of previously established fast training methods. In addition, our classical algorithm can be generalized to the Quantum computation model. Interestingly, we can get a similar sublinear cost per iteration but avoid preprocessing initial weights or input data points.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here