Domain, Translationese and Noise in Synthetic Data for Neural Machine Translation

6 Nov 2019Nikolay BogoychevRico Sennrich

The quality of neural machine translation can be improved by leveraging additional monolingual resources to create synthetic training data. Source-side monolingual data can be (forward-)translated into the target language for self-training; target-side monolingual data can be back-translated... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet