Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem

14 Aug 2015  ·  Adams Wei Yu, Qihang Lin, Tianbao Yang ·

We propose a doubly stochastic primal-dual coordinate optimization algorithm for empirical risk minimization, which can be formulated as a bilinear saddle-point problem. In each iteration, our method randomly samples a block of coordinates of the primal and dual solutions to update. The linear convergence of our method could be established in terms of 1) the distance from the current iterate to the optimal solution and 2) the primal-dual objective gap. We show that the proposed method has a lower overall complexity than existing coordinate methods when either the data matrix has a factorized structure or the proximal mapping on each block is computationally expensive, e.g., involving an eigenvalue decomposition. The efficiency of the proposed method is confirmed by empirical studies on several real applications, such as the multi-task large margin nearest neighbor problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here