Doubting AI Predictions: Influence-Driven Second Opinion Recommendation

29 Apr 2022  ·  Maria De-Arteaga, Alexandra Chouldechova, Artur Dubrawski ·

Effective human-AI collaboration requires a system design that provides humans with meaningful ways to make sense of and critically evaluate algorithmic recommendations. In this paper, we propose a way to augment human-AI collaboration by building on a common organizational practice: identifying experts who are likely to provide complementary opinions. When machine learning algorithms are trained to predict human-generated assessments, experts' rich multitude of perspectives is frequently lost in monolithic algorithmic recommendations. The proposed approach aims to leverage productive disagreement by (1) identifying whether some experts are likely to disagree with an algorithmic assessment and, if so, (2) recommend an expert to request a second opinion from.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here