Dream Formulations and Deep Neural Networks: Humanistic Themes in the Iconology of the Machine-Learned Image

5 Feb 2018  ·  Emily L. Spratt ·

This paper addresses the interpretability of deep learning-enabled image recognition processes in computer vision science in relation to theories in art history and cognitive psychology on the vision-related perceptual capabilities of humans. Examination of what is determinable about the machine-learned image in comparison to humanistic theories of visual perception, particularly in regard to art historian Erwin Panofsky's methodology for image analysis and psychologist Eleanor Rosch's theory of graded categorization according to prototypes, finds that there are surprising similarities between the two that suggest that researchers in the arts and the sciences would have much to benefit from closer collaborations... Utilizing the examples of Google's DeepDream and the Machine Learning and Perception Lab at Georgia Tech's Grad-CAM: Gradient-weighted Class Activation Mapping programs, this study suggests that a revival of art historical research in iconography and formalism in the age of AI is essential for shaping the future navigation and interpretation of all machine-learned images, given the rapid developments in image recognition technologies. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.