Dropout as a Structured Shrinkage Prior

9 Oct 2018  ·  Eric Nalisnick, José Miguel Hernández-Lobato, Padhraic Smyth ·

Dropout regularization of deep neural networks has been a mysterious yet effective tool to prevent overfitting. Explanations for its success range from the prevention of "co-adapted" weights to it being a form of cheap Bayesian inference. We propose a novel framework for understanding multiplicative noise in neural networks, considering continuous distributions as well as Bernoulli noise (i.e. dropout). We show that multiplicative noise induces structured shrinkage priors on a network's weights. We derive the equivalence through reparametrization properties of scale mixtures and without invoking any approximations. Given the equivalence, we then show that dropout's Monte Carlo training objective approximates marginal MAP estimation. We leverage these insights to propose a novel shrinkage framework for resnets, terming the prior 'automatic depth determination' as it is the natural analog of automatic relevance determination for network depth. Lastly, we investigate two inference strategies that improve upon the aforementioned MAP approximation in regression benchmarks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here