Drug-target affinity prediction method based on consistent expression of heterogeneous data

13 Nov 2022  ·  Boyuan Liu ·

The first step in drug discovery is finding drug molecule moieties with medicinal activity against specific targets. Therefore, it is crucial to investigate the interaction between drug-target proteins and small chemical molecules. However, traditional experimental methods for discovering potential small drug molecules are labor-intensive and time-consuming. There is currently a lot of interest in building computational models to screen small drug molecules using drug molecule-related databases. In this paper, we propose a method for predicting drug-target binding affinity using deep learning models. This method uses a modified GRU and GNN to extract features from the drug-target protein sequences and the drug molecule map, respectively, to obtain their feature vectors. The combined vectors are used as vector representations of drug-target molecule pairs and then fed into a fully connected network to predict drug-target binding affinity. This proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods