Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification

The problem of extracting meaningful data through graph analysis spans a range of different fields, such as the internet, social networks, biological networks, and many others. The importance of being able to effectively mine and learn from such data continues to grow as more and more structured data become available. In this paper, we present a simple and scalable semi-supervised learning method for graph-structured data in which only a very small portion of the training data are labeled. To sufficiently embed the graph knowledge, our method performs graph convolution from different views of the raw data. In particular, a dual graph convolutional neural network method is devised to jointly consider the two essential assumptions of semi-supervised learning: (1) local consistency and (2) global consistency. Accordingly, two convolutional neural networks are devised to embed the local-consistency-based and global-consistency-based knowledge, respectively. Given the different data transformations from the two networks, we then introduce an unsupervised temporal loss function for the ensemble. In experiments using both unsupervised and supervised loss functions, our method outperforms state-of-the-art techniques on different datasets.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here