Dynamic DH-MBIR for Phase-Error Estimation from Streaming Digital-Holography Data
Directed energy applications require the estimation of digital-holographic (DH) phase errors due to atmospheric turbulence in order to accurately focus the outgoing beam. These phase error estimates must be computed with very low latency to keep pace with changing atmospheric parameters, which requires that phase errors be estimated in a single shot of DH data. The digital holography model-based iterative reconstruction (DH-MBIR) algorithm is capable of accurately estimating phase errors in a single shot using the expectation maximization (EM) algorithm. However, existing implementations of DH-MBIR require hundreds of iterations, which is not practical for real-time applications. In this paper, we present the Dynamic DH-MBIR (DDH-MBIR) algorithm for estimating isoplanatic phase errors from streaming single-shot data with extremely low latency. The Dynamic DH-MBIR algorithm reduces the computation and latency by orders of magnitude relative to conventional DH-MBIR, making real-time throughput and latency feasible in applications. Using simulated data that models frozen flow of atmospheric turbulence, we show that our algorithm can achieve a consistently high Strehl ratio with realistic simulation parameters using only 1 iteration per timestep.
PDF Abstract