Dynamic Graph Representation Learning with Fourier Temporal State Embedding

1 Jan 2021  ·  Yihan He, Wei Cao, Shun Zheng, Zhifeng Gao, Jiang Bian ·

Static graph representation learning has been applied in many tasks over the years thanks to the invention of unsupervised graph embedding methods and more recently, graph neural networks (GNNs). However, in many cases, we are to handle dynamic graphs where the structures of graphs and labels of the nodes are evolving steadily with time. This has posed a great challenge to existing methods in time and memory efficiency. In this work, we present a new method named Fourier Temporal State Embedding (FTSE) to address the temporal information in dynamic graph representation learning. FTSE offered time and memory-efficient solution through applying signal processing techniques to the temporal graph signals. We paired the Fourier Transform with an efficient edge network and provided a new prototype of modeling dynamic graph evolution with high precision. FTSE can also prevent the 'history explosion' that exists in sequential models. The empirical study shows that our proposed approach achieves significantly better performance than previous approaches on public datasets across multiple tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here