Dynamic Infinite Relational Model for Time-varying Relational Data Analysis

NeurIPS 2010  ·  Katsuhiko Ishiguro, Tomoharu Iwata, Naonori Ueda, Joshua B. Tenenbaum ·

We propose a new probabilistic model for analyzing dynamic evolutions of relational data, such as additions, deletions and split & merge, of relation clusters like communities in social networks. Our proposed model abstracts observed time-varying object-object relationships into relationships between object clusters. We extend the infinite Hidden Markov model to follow dynamic and time-sensitive changes in the structure of the relational data and to estimate a number of clusters simultaneously. We show the usefulness of the model through experiments with synthetic and real-world data sets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here