Do Compressed LLMs Forget Knowledge? An Experimental Study with Practical Implications

2 Oct 2023  ·  Duc N. M Hoang, Minsik Cho, Thomas Merth, Mohammad Rastegari, Zhangyang Wang ·

Compressing Large Language Models (LLMs) often leads to reduced performance, especially for knowledge-intensive tasks. In this work, we dive into how compression damages LLMs' inherent knowledge and the possible remedies. We start by proposing two conjectures on the nature of the damage: one is certain knowledge being forgotten (or erased) after LLM compression, hence necessitating the compressed model to (re)learn from data with additional parameters; the other presumes that knowledge is internally displaced and hence one requires merely "inference re-direction" with input-side augmentation such as prompting, to recover the knowledge-related performance. Extensive experiments are then designed to (in)validate the two conjectures. We observe the promise of prompting in comparison to model tuning; we further unlock prompting's potential by introducing a variant called Inference-time Dynamic Prompting (IDP), that can effectively increase prompt diversity without incurring any inference overhead. Our experiments consistently suggest that compared to the classical re-training alternatives such as LoRA, prompting with IDP leads to better or comparable post-compression performance recovery, while saving the extra parameter size by 21x and reducing inference latency by 60%. Our experiments hence strongly endorse the conjecture of "knowledge displaced" over "knowledge forgotten", and shed light on a new efficient mechanism to restore compressed LLM performance. We additionally visualize and analyze the different attention and activation patterns between prompted and re-trained models, demonstrating they achieve performance recovery in two different regimes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here