Dynamic Sampling Networks for Efficient Action Recognition in Videos

28 Jun 2020Yin-Dong ZhengZhaoyang LiuTong LuLimin Wang

The existing action recognition methods are mainly based on clip-level classifiers such as two-stream CNNs or 3D CNNs, which are trained from the randomly selected clips and applied to densely sampled clips during testing. However, this standard setting might be suboptimal for training classifiers and also requires huge computational overhead when deployed in practice... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet