Dynamic Subspace Estimation with Grassmannian Geodesics
Dynamic subspace estimation, or subspace tracking, is a fundamental problem in statistical signal processing and machine learning. This paper considers a geodesic model for time-varying subspaces. The natural objective function for this model is non-convex. We propose a novel algorithm for minimizing this objective and estimating the parameters of the model from data with Grassmannian-constrained optimization. We show that with this algorithm, the objective is monotonically non-increasing. We demonstrate the performance of this model and our algorithm on synthetic data, video data, and dynamic fMRI data.
PDF Abstract