Effects of anterior temporal lobe resection on cortical morphology

Anterior temporal lobe resection (ATLR) is a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Resection may involve large amounts of cortical tissue. Here, we examine the effects of this surgery on cortical morphology measured in independent variables both near the resection and remotely. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2 to 13 months after surgery. We used our newly developed surface-based method to locally compute traditional morphological variables (average cortical thickness, exposed surface area, and total surface area), and the independent measures $K$, $I$, and $S$, where $K$ measures white matter tension, $I$ captures isometric scaling, and $S$ contains the remaining information about cortical shape. Data from 924 healthy controls was included to account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here