Efficient average-case population recovery in the presence of insertions and deletions

12 Jul 2019  ·  Frank Ban, Xi Chen, Rocco A. Servedio, Sandip Sinha ·

Several recent works have considered the \emph{trace reconstruction problem}, in which an unknown source string $x\in\{0,1\}^n$ is transmitted through a probabilistic channel which may randomly delete coordinates or insert random bits, resulting in a \emph{trace} of $x$. The goal is to reconstruct the original string~$x$ from independent traces of $x$. While the best algorithms known for worst-case strings use $\exp(O(n^{1/3}))$ traces \cite{DOS17,NazarovPeres17}, highly efficient algorithms are known \cite{PZ17,HPP18} for the \emph{average-case} version, in which $x$ is uniformly random. We consider a generalization of this average-case trace reconstruction problem, which we call \emph{average-case population recovery in the presence of insertions and deletions}. In this problem, there is an unknown distribution $\cal{D}$ over $s$ unknown source strings $x^1,\dots,x^s \in \{0,1\}^n$, and each sample is independently generated by drawing some $x^i$ from $\cal{D}$ and returning an independent trace of $x^i$. Building on \cite{PZ17} and \cite{HPP18}, we give an efficient algorithm for this problem. For any support size $s \leq \smash{\exp(\Theta(n^{1/3}))}$, for a $1-o(1)$ fraction of all $s$-element support sets $\{x^1,\dots,x^s\} \subset \{0,1\}^n$, for every distribution $\cal{D}$ supported on $\{x^1,\dots,x^s\}$, our algorithm efficiently recovers ${\cal D}$ up to total variation distance $\epsilon$ with high probability, given access to independent traces of independent draws from $\cal{D}$. The algorithm runs in time poly$(n,s,1/\epsilon)$ and its sample complexity is poly$(s,1/\epsilon,\exp(\log^{1/3}n)).$ This polynomial dependence on the support size $s$ is in sharp contrast with the \emph{worst-case} version (when $x^1,\dots,x^s$ may be any strings in $\{0,1\}^n$), in which the sample complexity of the most efficient known algorithm \cite{BCFSS19} is doubly exponential in $s$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here