Efficient circuit implementation for coined quantum walks on binary trees and application to reinforcement learning

13 Oct 2022  ·  Thomas Mullor, David Vigouroux, Louis Bethune ·

Quantum walks on binary trees are used in many quantum algorithms to achieve important speedup over classical algorithms. The formulation of this kind of algorithms as quantum circuit presents the advantage of being easily readable, executable on circuit based quantum computers and simulators and optimal on the usage of resources. We propose a strategy to compose quantum circuit that performs quantum walk on binary trees following universal gate model quantum computation principles. We give a particular attention to NAND formula evaluation algorithm as it could have many applications in game theory and reinforcement learning. We therefore propose an application of this algorithm and show how it can be used to train a quantum reinforcement learning agent in a two player game environment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here