Efficient Decremental Learning Algorithms for Broad Learning System

31 Dec 2019Hufei Zhu

The decremented learning algorithms are required in machine learning, to prune redundant nodes and remove obsolete inline training samples. In this paper, an efficient decremented learning algorithm to prune redundant nodes is deduced from the incremental learning algorithm 1 proposed in [9] for added nodes, and two decremented learning algorithms to remove training samples are deduced from the two incremental learning algorithms proposed in [10] for added inputs... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet